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We study the recovery of continuous functions from Fourier coefficients with

respect to certain given orthonormal systems, blurred by noise. For deterministic

noise this is a classical ill-posed problem. Emphasis is laid on a priori smoothness

assumptions on the solution, which allows to apply regularization to reach the best

possible accuracy. Results are obtained for systems obeying norm growth conditions.

In the white noise setting mild additional assumptions have to be made to have

accurate bounds. We finish our study with the recovery of functions from noisy

coefficients with respect to the Haar system. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

The problem of stable summation of Fourier series with respect to a given
orthonormal system of functions fjk; k ¼ 1; 2; . . .g under small changes in
the coefficients, measured in l2 is a classical example of an ill-posed problem
if we want to measure the error in the sup-norm jj � jj1: To be more specific
we study functions belonging to C½0; 1�; the space of continuous functions
on ½0; 1�: The problem may now be formulated as follows. We want to
1 To whom correspondence should be addressed.
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recover a continuous function y from (Fourier) coefficients with respect to a
given orthonormal system fjk; k ¼ 1; 2; . . .g; but instead of yk :¼ hy;jki;
k ¼ 1; 2; . . . we are given only a noisy sequence of numbers yd :¼ ðyd;kÞ1k¼1;
determined by

yd;k :¼ yk þ dxk; k ¼ 1; 2; . . . ; ð1Þ

where x :¼ ðxkÞ1k¼1 is the noise. Usually it is assumed that the noise is
deterministic and has jjxjjl241: This classical ill-posed problem was studied
in [12, Chap. 6], in an appendix to the textbook [4], in papers by Aliev [2]
and many others. In all cases the application of Tikhonov regularization was
considered. Standard assumptions on the smoothness of the true solution
were expressed in terms of spaces W

m
2 ; associated with the given system

fjk; k ¼ 1; 2; . . .g; i.e.,

W
m
2 :¼ y 2 L2½0; 1�; jjyjj2m :¼

X1
k¼1

k2mjhy;jkij
251

( )
:

Typically, functions belonging to some W
m
2 ; will have certain derivatives.

Example 1.1. For the trigonometric system and integer m; the space W
m
2

consists of 1-periodic functions having square summable derivatives up to
the order m:

If we let fjk; k 2 Ng be the (properly scaled) system of Legendre
polynomials, then Rafal’son [10] and Tomin [13] have shown, that the
respective space W

m
2 consists of all functions yðtÞ; for which the derivatives

yðiÞ; i ¼ 1; . . . ; m� 1 are absolutely continuous on each subinterval ½a; b� �
ð0; 1Þ and

Z 1

0

jyðmÞðtÞj2tmð1 � tÞm dt51:

This means, that the highest derivative yðmÞ may have singularities at the end
points 0 or 1.

On the other hand, under such assumptions, Il’in and Pozniak [4] for the
trigonometric system and Aliev [2] for the more general case of any system
with uniformly bounded norm jjjkjj14C; k ¼ 1; 2; . . . ; proved that for
s 2 ð1

4
; m� 1

2
Þ Tikhonov regularization Ta;sðydÞ :¼

P1
k¼1

yd;k
1þak2sjk yields jjy �

Ta;sðydÞjj14Cð
ffiffiffi
a

p
þ d=aÞ: We emphasize that it is one of the major topics

within the theory of ill-posed problems to investigate how to choose the
regularization parameter a; or the discretization level n; below, as a function
of the noise level d: So, from the previous estimate one can see that the
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optimal choice for a is a0 ¼ d2=3 for which

jjy � Ta0;sðydÞjj14Cd1=3: ð2Þ

Here and throughout the paper C denotes generic constants that can vary
from appearance to appearance. To the best of our knowledge, we refer also
to the survey by Liskovets [8], this is the culmination of all previous work on
this particular problem. Still some questions remain open.

First, estimate (2) does not take into account the given smoothness.
Moreover, it does not indicate the actual degree of ill-posedness of the
problem which is measured by the lack of accuracy due to ill-posedness. It is
common belief, that this degree depends on the growth of jjjkjj1 when
k ! 1: We will study this problem for two different classes of orthonormal
systems, satisfying norm growth assumptions.

We say, that an orthonormal system fjk; k ¼ 1; 2; . . .g belongs to class
ðMnÞ; if

X1
k¼1

jjjkjj
2
1

k2n 51 ðMnÞ

for some n > 0: On the other hand, if it obeys

jjjkjj1 � kb; k ¼ 1; 2; . . . ; ðKbÞ

now for some b50; then we agree to say, that it belongs to class ðKbÞ:
It is immediate, that systems fj1;j2; . . .g; which obey ðKbÞ; will satisfy

ðMnÞ; with n ¼ bþ 1
2
þ e for any small e > 0: The trigonometric system has

property ðKbÞ for b ¼ 0; whereas the system of Legendre polynomials
requires to take b ¼ 1: One way to obtain systems from Mn is to consider
lacunary sequences fjk ¼ cnk

; nk ¼ yðkÞg; where yðkÞ increases. If fck; k ¼
1; 2; . . .g obeys ðKbÞ; then fcnk

; k ¼ 1; 2; . . .g satisfies ðMnÞ; if yðkÞbk�n is

square summable.
We now return to the problem of stable summation. Below it will turn

out, that the solution to the problem of stable summation heavily depends as
well on the classes of orthonormal systems as on the kind of noise. Within
the deterministic noise framework, systems which enjoy property ðMnÞ fit
best. The point-wise growth as in ðKbÞ does not exactly fit, but still a slight
modification of our arguments allows to provide error estimates.

For white noise, the situation is different, since the behavior of the noise is
very much dependent on geometric properties of the underlying space. Here
we consider as noise x ¼ ðxkÞ1k¼1 independent standard Gaussian random
variables. In the Gaussian white noise setting we have to make an additional
assumption on the orthogonal system, expressed in terms of Lipschitz
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properties, namely, that there are some r51 and C51; for which

jjkðsÞ � jkðtÞj4Ckrjjjkjj1js � tj; s; t 2 ½0; 1�: ð3Þ

Note that this assumption is fulfilled for the trigonometric system with
r ¼ 1: For algebraic polynomials jk of degree k Markov’s inequality, see [6,
Theorem 3.5.8], asserts jjj0

kjj142k2jjjkjj1; such that (3) is satisfied with
r ¼ 2:

We shall study regularizing properties of summation methods

Ta
n ðydÞ :¼

Xn

k¼1

an
kyd;kjk;

for certain triangular arrays a :¼ ðan
kÞ; k ¼ 1; . . . ; n; n 2 N: Such summa-

tion methods are called l-methods, see, e.g. [6, Chap. 2.2.4] and play a
stabilizing role in the direct (well-posed) problem of recovery.

The quality of the summation methods Ta
n ðydÞ will depend on the

truncation level n and on properties of a :¼ ðan
kÞ; k ¼ 1; . . . ; n; n 2 N; more

precisely we shall assume, that there is C and some l; such that

j1 � an
kj4C

k

n

� �l

; 14k4n; n 2 N: ð4Þ

We agree to call Ta
n of degree l; if this is the case. We note in passing, that as

a consequence, the array a is uniformly bounded. The following examples
show that assumption (4) is rather natural.

Example 1.2. These methods cover the most prominent methods of
regularization, one obtained from Tikhonov regularization with parameters a
and smoothness s; i.e., Ta;s

n ðydÞ :¼
Pn

k¼1
yd;k

1þak2sjk; and the other by self-

regularization SnðydÞ :¼
Pn

k¼1 yd;kjk: It is easily seen, that self-regularization
Sn has arbitrary degree, while Tikhonov regularization Ta;s

n with
a ¼ aðnÞ4Cn�r has degree 2s; if r52s and 0 otherwise.

The F!eejer method of summation, where an
k :¼ ð1 � k�1

n
Þ; k4n; meets (4)

with l ¼ 1:
Moreover, we also indicate the Bernstein–Rogosinsky method, applied to

the trigonometric system for which n ¼ 2m þ 1 usually. In this method we
let an

2l :¼ an
2lþ1 :¼ cos pl

2m
; l ¼ 0; 1; . . . ;m: Since

j1 � an
2l j ¼ j1 � an

2lþ1j ¼ 1 � cos
pl

2m

				
				 ¼ 2 sin2 pl

4m
4

p2

8

l

m

� �2

;

one can see that the Bernstein–Rogosinsky method has degree 2.
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As will be transparent below, given an orthonormal system and a priori
smoothness m; any such summation method will provide the same optimal
order of accuracy as d ! 0; if l in (4) is large enough. This best possible
accuracy will be different, for classes ðMnÞ and ðKbÞ as well as for different
assumptions on the noise.

2. SYSTEMS FROM CLASS ðMnÞ

We first note the following inequality, which will be useful below. Among
others it implies, that for m > n functions from W

m
2 are continuous, if the

system fjk; k ¼ 1; 2; . . .g consists of continuous functions.

Proposition 2.1. For m > n we have

X1
k¼nþ1

hy;jkijk

					
					

					
					
1

4ðn þ 1Þ�ðm�nÞjjyjjm
X1
k¼1

jjjkjj
2
1

k2n

 !1=2

:

Proof. Let us recall yk ¼ hy;jki: An application of the Cauchy–Schwarz
inequality provides

X1
k¼nþ1

ykjk

					
					

					
					
1

4
X1

k¼nþ1

kn�mkmjykjk�njjjkjj1

4 ðn þ 1Þn�mjjyjjm
X1

k¼nþ1

jjjkjj
2
1

k2n

 !1=2

;

from which the assertion easily follows. ]

The main result in this section is

Theorem 2.1. Let fjk; k ¼ 1; 2; . . .g be of class ðMnÞ: Suppose we are

given noisy observations (1) and have a priori knowledge m > n of the exact

solution.

Let Ta
n be any summation method of degree l5m� n:

1. Deterministic noise: For n � d�1=m we have

sup
jjyjjm41

sup
jjxjjl241

jjy � Ta
n ðydÞjj14Cdðm�nÞ=m: ð5Þ

2. Gaussian white noise: For systems obeying (3) and a choice of n �
d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=dÞ

p ��1=m
we have the following bound:
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sup
jjyjjm41

Ejjy � Ta
n ðydÞjj14Cðd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=dÞ

p
Þ
m�n
m ; ð6Þ

where E denotes the expectation with respect to the Gaussian white noise x:

Proof. For any summation method Ta
n ðydÞ we decompose the error as

jjy � Ta
n ðydÞjj1

4
Xn

k¼1

ð1 � an
kÞykjk

					
					

					
					
1

þ
X1

k¼nþ1

ykjk

					
					

					
					
1

þd
Xn

k¼1

an
kxkjk

					
					

					
					
1

: ð7Þ

The first two summands are independent of the noise. For deterministic
noise the middle summand on the right-hand side above was estimated in
Proposition 2.1 and yields asymptotically dðm�nÞ=m by our choice of n: The
first summand can be estimated similarly as in Proposition 2.1 as

Xn

k¼1

ð1 � an
kÞykjk

					
					

					
					
1

4
Xn

k¼1

j1 � an
kjjykjjjjkjj1

4
C

nm�n

Xn

k¼1

km�njykjjjjkjj1

4Cnn�mjjyjjm
Xn

k¼1

jjjkjj
2
1

k2n

 !1=2

� dðm�nÞ=mjjyjjm:

For deterministic noise the last summand in (7) can be estimated as

d
Xn

k¼1

an
kxkjk

					
					

					
					
1

4Cdnn
Xn

k¼1

jjjkjj
2
1

k2n

 !1=2

� dðm�nÞ=m;

such that we arrive at (5).
It remains to treat the Gaussian white noise case. This is more elaborate.

We have to bound Ejj
Pn

k¼1 a
n
kxkjkjj1; which will be done using Dudley’s

Theorem [7, Theorem 11.17]. This asserts, that for Gaussian processes
ðXtÞt2T we have

E sup
t2T

jXtj424

Z D

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log NðT ; dX ; eÞ

p
de; ð8Þ

where NðT ; dX ; eÞ denotes the minimal number of e–balls required to cover
T in the metric dX ðs; tÞ :¼ ðEjXs � Xtj2Þ1=2: D denotes the diameter of
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ðT ; dX Þ: Estimate (8) is applied to the process

Xt :¼
Xn

k¼1

an
kxkjkðtÞ; t 2 ½0; 1�:

Since fxk; k ¼ 1; 2; . . .g are i.i.d. standard normal variables, we can
explicitly compute the metric

dX ðs; tÞ ¼
Xn

k¼1

ðan
kÞ

2jjkðsÞ � jkðtÞj
2

 !1=2

; s; t 2 ½0; 1�;

such that it is easy to bound the diameter by

D42
Xn

k¼1

ðan
kÞ

2jjjkjj
2
1

 !1=2

:

We can also bound distances in dX ðs; tÞ by a multiple of js � tj; using
assumption (3). Indeed,

dX ðs; tÞ4
Xn

k¼1

C2ðan
kÞ

2
k2rjjjkjj

2
1

 !1=2

js � tj; s; t 2 ½0; 1�:

If we denote B :¼ Cð
Pn

k¼1ðan
kÞ

2
k2rjjjkjj

2
1Þ1=2; then Dudley’s estimate (8)

yields

E
Xn

k¼1

an
kxkjk

					
					

					
					
1

4C

Z D

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðB=eÞ

p
de:

We let %DD :¼ maxf1;Dg and bound the right-hand side, using the Cauchy–
Schwarz inequality, by

Z D

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðB=eÞ

p
de4

ffiffiffiffi
D

p Z %DD

0

logðB=eÞ de

 !1=2

4 %DD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ logðBÞ

p
:

Assumption ðMnÞ yields B4CnðrþnÞ as well as D4Cnn; which finally
implies

E
Xn

k¼1

an
kxkjk

					
					

					
					
1

4Cnn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p
: ð9Þ
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Combining the estimate for the noise free term with (9) we obtain for the
proper choice of n

Ejjy � Ta
n ðydÞjj14Cjjyjjmðnn�m þ dnn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p
Þ

4Cjjyjjmðd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=dÞ

p
Þ
m�n
m ;

which completes the proof of (6) and of the theorem. ]

3. SYSTEMS FROM CLASS ðKbÞ

Again we start with a tail estimate, ensuring that W
m
2 consists of

continuous functions, if only the orthogonal system was continuous.

Proposition 3.1. For m > bþ 1
2

we have

X1
k¼nþ1

ykjk

					
					

					
					
1

4Cn�mþbþ1=2jjyjjm: ð10Þ

We omit the proof, because it is straightforward. The main result is

Theorem 3.1. Let fjk; k ¼ 1; 2; . . .g obey assumption ðKbÞ: Suppose we

are given noisy observations (1) and have a priori knowledge m of the exact

solution for m > bþ 1
2
: Let Ta

n ðydÞ be any summation method of degree l5m:
1. Deterministic noise: With n � d�1=m noisy data we have the following

error estimate:

sup
jjyjjm41

sup
jjxjjl241

jjy � Ta
n ðydÞjj14Cdðm�b�1=2Þ=m: ð11Þ

2. Gaussian white noise: For systems obeying (3) and a choice of n �
ðd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=dÞ

p
Þ�1=m

we have

sup
jjyjjm41

E jjy � Ta
n ðydÞjj14Cðd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=dÞ

p
Þ
m�b�1=2

m : ð12Þ

We note that the bounds given above are stronger, than the ones we
would obtain, simply using that ðKbÞ implies ðMnÞ for n ¼ bþ 1

2
þ e and

applying Theorem 2.1.

Proof. Again we start with the error decomposition (7) and use estimate
(10) and the assumption on n to bound the middle term.
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Moreover, we have the following Nikolski type inequality for any
polynomials with respect to the system fjkg:

Xn

k¼1

ukjk

					
					

					
					
1

4C
Xn

k¼1

jukjkb

4C
Xn

k¼1

jukj2
 !1=2 Xn

k¼1

k2b

 !1=2

4Cnbþ1=2
Xn

k¼1

jukj2
 !1=2

:

We apply this to jj
Pn

k¼1ð1 � an
kÞykjkjj1 and jj

Pn
k¼1 a

n
kxkjkjj1; separately

and obtain

Xn

k¼1

ð1 � an
kÞykjk

					
					

					
					
1

4Cnbþ1=2
Xn

k¼1

j1 � an
kj

2jykj2
 !1=2

4Cnbþ1=2 max
14k4n

fj1 � an
kjk�mg

� �
jjyjjm

4Cn�mþbþ1=2jjyjjm;

and jj
Pn

k¼1 a
n
kxkjkjj14Cnbþ1=2 . Recoursing the above estimates into the

error decomposition (7) we obtain for n � d�1=m and jjyjjm41

y �
Xn

k¼1

an
kyd;kjk

					
					

					
					
1

4Cnbþ1=2fn�m þ dg4Cd
m�b�1=2

m ;

which completes the proof of estimate (11). The proof for random noise
differs from the one for system from class ðMnÞ only in the bound for the
diameter D; which can be estimated by

D42
ffiffiffi
n

p
max
k4n

jan
kjjjjkjj14Cnbþ1=2:

This allows to prove (12) and to complete the proof of the theorem. ]

We mention, that the use of the Nikolski type argument evolved during
discussions with V. Temlyakov, Univ. of South Carolina.

Remark 3.1. Estimation under the presence of Gaussian white noise has
also been studied in [12], and more recently by Tsybakov [14]. For

trigonometric systems fjk;¼ 1; 2; . . .g and y 2 W
m
2 Tsybakov indicated the

best possible order for the expected value of the error, measured in C½0; 1�:

This turns out to be of the order ðd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=dÞ

p
Þ
m�1=2

m : He proved that this

order cannot be improved even if the trigonometric system is replaced by
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any other orthonormal system, still assuming y 2 W
m
2 ; associated to the

trigonometric system. It is worth mentioning, that in this paper, discretized
Tikhonov regularization was used and that the regularization parameter a
was chosen adapting to the unknown smoothness. Therefore it had to be
required, that the number n of observations was at least

n5d�2=ðminf1;m0�1=2gÞ; ð13Þ

where m0; the minimal smoothness, was supposed to be known.

We note that the number n of observations, which provide the optimal
order does not depend on properties of the system fjk; k ¼ 1; 2; . . .g:
Therefore, since the trigonometric system obeys ðKbÞ for b ¼ 0; we obtain
the best order of accuracy for this system with a number of observations
much less than the one in (13).

Further we note that for deterministic noise the order-optimality of the
error estimate (11) for the trigonometric system ðb ¼ 0Þ can be proved
within the general scheme for proving error estimates in the worst case, we
refer to [9]. We stress that to this end Shadrin’s inequality [11] must be used
instead of the standard interpolation inequality.

The constants C in the bounds (5), (6), (11) and (12) can be easily
estimated in the course of the proof. For example, as C in (5) one can take
C ¼ Cnð2C4 þ 1Þ; where C4 is the constant from (4), and Cn is the sum in
ðMnÞ:

4. THE HAAR SYSTEM

In this section we study the recovery of functions based on noisy
coefficients with respect to the Haar system fwm;jg; which is briefly
introduced as follows, see [5, Chap. 3]. We let w0;0ðtÞ � 1 and for naturals
k ¼ 1; 2; . . . and j ¼ 0; 1; 2; . . . ; 2k � 1; we let

wk;jðtÞ :¼
2k=2 if j=2k4t5ð j þ 1=2Þ=2k;

�2k=2 if ð j þ 1=2Þ=2k4t5ð j þ 1Þ=2k;

0 else:

8><
>:

We note that at each level k and for each t 2 ð0; 1Þ there is at most one
j ¼ jðkÞ for which wk;ja0: In this case it takes absolute value 2k=2: The Haar
system is an orthonormal basis in L2½0; 1�: By assigning ðk; jÞ ! n :¼ 2k þ j

we obtain a system as in the previous sections. With this identification we see
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for any function y ¼
P

k

P
j yk;jwk;j

jjyjj2m ¼
X1
n¼1

n2mjhy; wnij
2 �

X1
k¼0

22km
X2k�1

j¼0

jhy; wk;jij
2 ¼ jjyjj2Bm

2;2
: ð14Þ

This establishes the usual connection between the Sobolev norm jjyjjm from

the previous sections and the Besov norm. Below we shall work with the

Besov norm jjyjjBm
2;2
: For brevity we let yk :¼ ðyk;jÞ2k�1

j¼0 2 R2k

; k ¼ 0; 1; 2; . . . ;

and jjykjjp; 14p41; will mean the standard lp-norm of the vector yk in

R2k

:
We recall some properties of the Haar system, cf. [5, Chap. 3]. If, for a

continuous function y we let SmðyÞ :¼
Pm

k¼0

P2k�1
j¼0 hy; wk;jiwk;j; then we have

convergence jjy � SmðyÞjj1 ! 0 as m ! 1: But, since the Haar system

consists of discontinuous functions, it can be shown that

lim sup
m!1

max
04j52m

jhy; wm;jij23m=2 > 0;

unless y was constant. Therefore, we need to study functions from spaces

W
m
2 for m53

2 only.

Our subsequent arguments will be based on the following important
observation. For any vector u ¼ fuk;jg and summation region I � f0; 1; . . .g
we have

X
k2I

X2k�1

j¼0

uk;jwk;jðtÞ
					

					 ¼
X
k2I

uk;jðkÞwk;jðkÞðtÞ
					

					
4
X
k2I

2k=2juk;jðkÞj4
X
k2I

2k=2jjukjj1: ð15Þ

For the Haar system, m > 1
2

is sufficient for a tail estimate as in Propositions
2.1 and 3.1; and we will restrict ourselves to 1

2
5m53

2
below. However, since

the Haar system does not consist of continuous functions we cannot
guarantee, that functions from W

m
2 are continuous.

Proposition 4.1. For m > 1
2

and any m it holds the estimate

X1
k¼mþ1

X2k�1

j¼0

yk;jwk;jðtÞ
					

					
					

					
1

4Cð2�mÞðm�1=2Þjjyjjm:
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Proof. Using (15) we infer for any fixed t 2 ð0; 1Þ

X
k>m

X2k�1

j¼0

yk;jwk;jðtÞ
					

					4
X
k>m

2k=2 jjykjj14
X
k>m

2k=22�km2kmjjykjj2

4
X
k>m

2ð1�2mÞk

 !1=2

jjyjjm4Cð2mÞð1=2�mÞjjyjjm: ]

Remark 4.1. Since jjwk;jjj1 ¼ 2k=2; the Haar system obeys ðKbÞ with b ¼
1
2
: Therefore, Theorem 3.1 does not apply for 1

2
5m51:

In order to establish the main result of this section we need to rewrite the
assumptions on the observations yd: We assume that we are given noisy
observations

yd;k;j :¼ hy; wk;ji þ dxk;j; j ¼ 0; . . . ; 2k � 1; k ¼ 0; 1; 2 . . . : ð16Þ

For deterministic noise x ¼ fxk;jg we assume jjxk;jjjl241: Again, for random
noise we assume, that all xk;j are i.i.d. standard normal variables.

Remark 4.2. The recovery of continuous functions from noisy coeffi-
cients with respect to the Haar system was studied by Agayan and Bayadyan
[1]. The assumption of these authors made on the functions does not directly

fit our classes W
m
2 : In terms of the Besov norms these assumptions can be

expressed as belonging to B
1=2
p;1 ; which, for p52; is slightly more restrictive

than belonging to W
1=2
2 ¼ B

1=2
2;2 ; this still ensures, that tails as in Proposition

4.1 tend to 0. In any case, these authors establish convergence of some
proper Tikhonov regularization, but no rate of convergence can be deduced.
Our assumption is more restrictive, but allows uniform estimates of the
accuracy.

It remains to rewrite the properties of stable summation methods for the
present setup. For a sequence a ¼ ðak;jÞ; j ¼ 0; 1; . . . ; 2k � 1; k ¼ 0; 1; . . .
and truncation level m we recall (with a slight abuse of notation) that Ta

m has
degree l; if j1 � ak;jj4C2lðk�mÞ; for k4m and j52k: Now we are ready to
state the main result of this section.

Theorem 4.1. Let 1
2
5m53

2
and Ta

m be any summation method of degree

l > m� 1
2
: We have for m ¼ 1

m log2ð1=dÞ þ oð1Þ as d ! 0 and
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1. For deterministic noise

sup
jjyjjm41

sup
jjxjjl241

jjy � Ta
mðydÞjj14Cdðm�1=2Þ=m: ð17Þ

2. For Gaussian white noise: we have

sup
jjyjjm41

E jjy � Ta
mðydÞjj14Cðd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=dÞ

p
Þðm�1=2Þ=m: ð18Þ

Proof. Again the proof uses the basic decomposition of the error,
corresponding to (7), which here rewrites as

jjy � Ta
mðydÞjj1 4

Xm

k¼0

¼ 73Þ
X2k�1

j¼0

ð1 � ak;jÞyk;jwk;j

					
					

					
					
1

þ
X1

k¼mþ1

X2k�1

j¼0

yk;jwk;j

					
					

					
					
1

þd
Xm

k¼0

X2k�1

j¼0

ak;jxk;jwk;j

					
					

					
					
1

: ð19Þ

The middle summand in this decomposition can be bounded from above
using Proposition 4.1 by ð2�mÞðm�1=2Þ � dðm�1=2Þ=m; by the choice of m: The
first summand is independent of the noise. It can be estimated using (15) and
taking into account the degree of the summation method Ta

m as follows:

Xm

k¼0

X2k�1

j¼0

ð1 � ak;jÞyk;jwk;j

					
					

					
					
1

4
Xm

k¼0

2k=2 max
04j52k

j1 � ak;j jjyk;j j

4C
Xm

k¼0

2k=22lðk�mÞ2�km2kmjjykjj2

4C
Xm

k¼0

2kð1�2mþ2lÞ�2lm

 !1=2

jjyjjm

4Cð2�mÞðm�1=2Þjjyjjm4Cdðm�1=2Þ=mjjyjjm:

It remains to estimate the noise term. For deterministic noise we have by
(15) the estimate

Xm

k¼0

X2k�1

j¼0

ak;jxk;jak;j

					
					

					
					
1

4
Xm

k¼0

2k=2jjxkjj24
Xm

k¼0

2k

 !1=2

;
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which in turn is bounded by C2m=2: Since d2m=2 � dðm�1=2Þ=m; the proof of
estimate (17) can be accomplished.

For Gaussian white noise we cannot use an argument, similar to the one
from the previous sections, since the Haar system does not obey any
Lipschitz property. Instead, direct calculations, based on (15) yield

E
Xm

k¼0

X2k�1

j¼0

ak;jxk;jwk;j

					
					

					
					
1

4C
Xm

k¼0

2k=2E max
04j52k

jxk;jj:

It is well known, that for i.i.d. standard normal variables ðgjÞN
j¼1 we have

E max04j5N jgjj4C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðN þ 1Þ

p
; see, e.g., [7, Chap. 3.3]; thus E max04j52k

jxk;jj4C
ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p
: This implies

E
Xm

k¼0

X2k�1

j¼0

ak;jxk;jwk;j

					
					

					
					
1

4C
Xm

k¼1

2k=2
ffiffiffi
k

p
4C

ffiffiffiffi
m

p Xm

k¼1

2k=24C
ffiffiffiffiffiffiffiffiffi
2mm

p
;

which by the choice of m allows to accomplish the proof of the theorem. ]

Remark 4.3. We note that in Theorem 4.1 the number m for
deterministic noise and for Gaussian white noise is the same. Actually,
one should take m such that 2m � ðdÞð�1=mÞ in the first case, while but for
Gaussian white noise m should be such that 2m � ðd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=dÞ

p
Þð�1=mÞ: So, in

the both cases m has the order indicated in Theorem 4.1.

Remark 4.4. Function estimation under Gaussian white noise, based on
observations (16) was studied by Donoho and Johnstone [3], who proved an
L2-rate ðd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=dÞ

p
Þm=ðmþ1=2Þ; which is slightly better than the estimate in

the second assertion of Theorem 4.1, due to a relaxed error criterion.

We also note that Theorem 4.1 indicates the same accuracy as for the
trigonometric system, although the Haar system is not uniformly bounded.
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